This proof is a little different than the one in the textbook (pp. 433–435) and is drawn from Algorithms from P to NP, Vol. 1, Moret and Shapiro, Benjamin/Cummings Publishing Company, 1991.

Definition: Let C be a set of characters and $f(c)$ be the number of occurrences of each character $c \in C$. Consider a particular code for C and denote by $\ell(c)$ the length of the code for each character $c \in C$. The *cost* of the code is

$$\sum_{c \in C} f(c) \cdot \ell(c).$$

I.e., the cost of the code is the total number of bits needed to represent the encoded version of the entire text, when each character c occurs $f(c)$ times and is coded using $\ell(c)$ bits.

Definition: A code is *optimal* if the cost of the code is the smallest possible.

Each code can be represented by a binary tree, with each edge labeled 0 or 1. Thus the length of the code for character c, denoted $\ell(c)$, is equal to the depth of c in the tree.

Theorem: The Huffman code is an optimal code.

Proof: Use induction on n, the number of characters in C.

Basis: $n = 2$. Let $C = \{a, b\}$. The algorithm gives code 0 to a and code 1 to b or vice versa, depending on which character occurs less frequently. Clearly a 1-bit code is the smallest possible.

Induction: Suppose the Huffman code is optimal for $n - 1$ characters. We must show it is optimal for n characters.

Let C be a set of n characters, with occurrences given by f. Let T be the tree constructed by the Huffman algorithm. Consider characters y and z with the second fewest and fewest occurrences. By the way the algorithm works, y and z are leaves and are siblings in T.

Claim: In some optimal tree (i.e., tree corresponding to an optimal code) for C, y and z are also leaves and siblings.

Proof of Claim:

1. z must be at the greatest depth in some optimal tree. Otherwise swapping z with another character at greater depth would produce a better code.
2. z must have a sibling. Otherwise merging z with its parent would produce a better code that doesn’t waste a bit on the code for z.
3. z’s sibling is also a leaf, because z has greatest depth.
4. y is also at greatest depth. Otherwise swapping y and z’s sibling would produce a better code.
5. y has a sibling (same argument as for z).
6. If y and z are not siblings, then swap y with z’s sibling and get another optimal code.

So the claim is true. Let T_{opt} be an optimal tree for C in which y and z are leaves and siblings.

Let $C' = C - \{y, z\} \cup \{x\}$ where x is a new character with $f(x) = f(y) + f(z)$. That is, remove y and z, and replace them with a new character whose number of occurrences is the sum of those of y and z.

Note that C' has $n - 1$ characters in it, so we can apply the inductive hypothesis to C': i.e., the Huffman algorithm produces an optimal code for C'.

1
Let T' be the tree produced by the Huffman algorithm on C'. By the way the algorithm works, T' is the same as T (the Huffman tree for C) except that the leaves for y and z, together with their parent, are replaced by the single node x, which is a leaf.

Let T'_{opt} be the result of doing the same replacement (of y, z and their parent with x) to T_{opt}.

We want to show that $\text{cost}(T) \leq \text{cost}(T_{opt})$, i.e., that the cost of the tree produced by the Huffman algorithm for C is at least as small as the optimal cost for C.

\[
\text{cost}(T) = \text{cost}(T') + f(y) + f(z) \quad \text{see (a) below}
\leq \text{cost}(T'_{opt}) + f(y) + f(z) \quad \text{by the INDUCTIVE HYPOTHESIS T' is optimal}
= \text{cost}(T_{opt}) \quad \text{see (b) below}
\]

So if we can prove (a) and (b), we have shown that the cost of the tree T made by the Huffman algorithm for C is at most the cost of the optimal tree, T_{opt}, and thus T is optimal also.

Now prove (a). Let d be the cost (i.e., depth) of y and z in T. Then the cost (i.e., depth) of x is $d - 1$ in T'. So we have:

\[
\text{cost}(T') = \text{cost}(T) - \text{cost}(y) - \text{cost}(z) + \text{cost}(x)
= \text{cost}(T) - f(y) \cdot d - f(z) \cdot d + (f(y) + f(z)) \cdot (d - 1)
= \text{cost}(T) - f(y) - f(z).
\]

Now rearrange to get $\text{cost}(T) = \text{cost}(T') + f(y) + f(z)$.

Now prove (b). We want to show that

\[
\text{cost}(T_{opt}) = \text{cost}(T'_{opt}) + f(y) + f(z).
\]

This is done the same way as (a).