Relations

Given two sets A and B:

A relation R from A to B is a subset of A×B.

\[R \subseteq A \times B \]

Given an ordered pair (x,y) in A×B:

x is related to y by R iff (x,y) is in R

A is the domain of R and B is the co-domain of R

Some Relations on Integers

Here are some relations on \(\mathbb{Z} \):

\[R_1 = \{(a, b) \mid a \leq b\} \]

\[R_2 = \{(a, b) \mid a > b\} \]

\[R_3 = \{(a, b) \mid a = b \text{ or } a = -b\} \]

\[R_4 = \{(a, b) \mid a = b\} \]

\[R_5 = \{(a, b) \mid a = b + 1\} \]

\[R_6 = \{(a, b) \mid a + b \leq 3\} \]
Number of relations

How many relations are there on a set A with n elements?
(Each relation is a subset of $A \times A$)

1. How big is $A \times A$?
$|A \times A| = n^2$

2. How many subsets are there of a set of size n^2?
2^{n^2} subsets

Properties of Relations

Useful properties that some (but not all) relations have:

- Reflexive
- Symmetric
- Antisymmetric
- Transitive

Let’s see what they are ...
Reflexive Relation

• Relation R on set A is reflexive if: $\forall a \in A$, $(a, a) \in R$

• $\forall a \in A$, $a R a$

Activity 7

Which of the following relations are **reflexive**? Why?

$R_1 = \{(a, b) \mid a \leq b\}$

$R_2 = \{(a, b) \mid a > b\}$

$R_3 = \{(a, b) \mid a = b \text{ or } a = -b\}$

$R_4 = \{(a, b) \mid a = b\}$

$R_5 = \{(a, b) \mid a = b + 1\}$

$R_6 = \{(a, b) \mid a + b \leq 3\}$
Activity 7 solution

Which of the following relations are reflexive? Why?

$R_1 = \{(a, b) \mid a \leq b\}$ is reflexive

$R_2 = \{(a, b) \mid a > b\}$

$R_3 = \{(a, b) \mid a = b \text{ or } a = -b\}$ is reflexive

$R_4 = \{(a, b) \mid a = b\}$ is reflexive

$R_5 = \{(a, b) \mid a = b + 1\}$

$R_6 = \{(a, b) \mid a + b \leq 3\}$

Symmetric Relation

- Relation R on set A is symmetric iff $\forall a, b \in A,$

 if $(a, b) \in R$ then $(b, a) \in R$

- $\forall a, b \in A,$ if $a R b$ then $b R a$
Activity 7

Which of the following relations are symmetric? Why?

\[R_1 = \{(a, b) \mid a \leq b\} \]
\[R_2 = \{(a, b) \mid a > b\} \]
\[R_3 = \{(a, b) \mid a = b \text{ or } a = -b\} \]
\[R_4 = \{(a, b) \mid a = b\} \]
\[R_5 = \{(a, b) \mid a = b + 1\} \]
\[R_6 = \{(a, b) \mid a + b \leq 3\} \]

Activity 7 solution

Which of the following relations are symmetric? Why?

\[R_1 = \{(a, b) \mid a \leq b\} \]
\[R_2 = \{(a, b) \mid a > b\} \]
\[R_3 = \{(a, b) \mid a = b \text{ or } a = -b\} \text{ is symmetric} \]
\[R_4 = \{(a, b) \mid a = b\} \text{ is symmetric} \]
\[R_5 = \{(a, b) \mid a = b + 1\} \]
\[R_6 = \{(a, b) \mid a + b \leq 3\} \text{ is symmetric} \]
Antisymmetric Relation

• Relation R on set A is antisymmetric if $\forall a, b \in A$, $(a, b) \in R$ and $(b, a) \in R$ implies $a = b$.
• $\forall a, b \in A$, if $a R b$ and $b R a$ then $a = b$.

Notes:
• The terms symmetric and antisymmetric are not opposites.
• A relation can have both properties or lack both properties.

Activity 7

Which of the following relations are antisymmetric? Why?

$R_1 = \{(a, b) \mid a \leq b\}$
$R_2 = \{(a, b) \mid a > b\}$
$R_3 = \{(a, b) \mid a = b \text{ or } a = -b\}$
$R_4 = \{(a, b) \mid a = b\}$
$R_5 = \{(a, b) \mid a = b + 1\}$
$R_6 = \{(a, b) \mid a + b \leq 3\}$
Activity 7 solution

Which of the following relations are antisymmetric? Why?

- $R_1 = \{(a, b) \mid a \leq b\}$ is antisymmetric
- $R_2 = \{(a, b) \mid a > b\}$ is antisymmetric
- $R_3 = \{(a, b) \mid a = b \text{ or } a = -b\}$
- $R_4 = \{(a, b) \mid a = b\}$ is antisymmetric
- $R_5 = \{(a, b) \mid a = b + 1\}$ is antisymmetric
- $R_6 = \{(a, b) \mid a + b \leq 3\}$

Transitive Relations

- Relation R on set A is transitive iff $\forall a, b, c \in A$, if $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$

- $\forall a, b, c \in A$, if $a \, R \, b$ and $b \, R \, c$, then $a \, R \, c$
Activity 7

Which of the following relations are transitive? Why?

\(R_1 = \{(a, b) \mid a \leq b\} \)

\(R_2 = \{(a, b) \mid a > b\} \)

\(R_3 = \{(a, b) \mid a = b \text{ or } a = -b\} \)

\(R_4 = \{(a, b) \mid a = b\} \)

\(R_5 = \{(a, b) \mid a = b + 1\} \)

\(R_6 = \{(a, b) \mid a + b \leq 3\} \)

Activity 7 solution

Which of the following relations are transitive? Why?

\(R_1 = \{(a, b) \mid a \leq b\} \text{ is transitive} \)

\(R_2 = \{(a, b) \mid a > b\} \text{ is transitive} \)

\(R_3 = \{(a, b) \mid a = b \text{ or } a = -b\} \text{ is transitive} \)

\(R_4 = \{(a, b) \mid a = b\} \text{ is transitive} \)

\(R_5 = \{(a, b) \mid a = b + 1\} \)

\(R_6 = \{(a, b) \mid a + b \leq 3\} \)
Another way to combine relations is analogous to function composition.

Suppose R is a relation from A to B and S is a relation from B to C. The composite of R and S is the relation from A to C consisting of ordered pairs (a, c) such that $\exists b \in B$ with $(a, b) \in R$ and $(b, c) \in S$.

Notation: $S \circ R$

Composing Relations example 1

$A = \{1, 2, 3\}$
$B = \{1, 2, 3, 4\}$
$C = \{0, 1, 2\}$

Suppose:
$R = \{(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)\}$
$S = \{(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)\}$

Then $S \circ R = \{(1, 0), (1, 1), (2, 1), (2, 2), (3, 0), (3, 1)\}$.
Suppose R is the relation on the set of people such that:

$$(a, b) \in R \iff a \text{ is the parent of } b.$$

Then $R \circ R$ consists of pairs (a, c) such that there is a person b where:

- a is the parent of b
- b is the parent of c

i.e., $R \circ R$ is the \textit{grandparent} relation.

A relation R on a set A is an \textit{equivalence} relation if it is:

1. reflexive
2. symmetric
3. transitive

Notation: if $(a, b) \in R$, then we write $a \sim b$.
Equivalence Relations examples

- All pairs \((a, b)\) of integers where \(a = b\) or \(a = -b\)
- All pairs \((a, b)\) of real numbers where \(a - b\) is an integer
- All pairs \((a, b)\) of integers that have the same remainder when divided by a fixed integer \(m\)
- All pairs of strings over some alphabet with the same length

Directed Graphs

A directed graph is a set \(V\) of vertices and a set \(E\) of edges (a subset of \(V \times V\))

An edge of the form \((a, a)\) is called a loop.
Directed Graph example

Vertices: \{a, b, c, d\}
Edges: \{(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)\}

Example

What are the ordered pairs in the relation represented by this directed graph?
Directed Graph and Relation Properties

When \(A = B \), the directed graph gives a visual way to check for certain properties of the relation:

Reflexive: every vertex has a self-loop

Symmetric: if \((x, y)\) is an edge, then so is \((y, x)\)

Antisymmetric: if \((x, y)\) is an edge, then \((y, x)\) is not an edge

Transitive: if \((x, y)\) and \((y, z)\) are edges, then \((x, z)\) is an edge (complete the triangle)

Example

The directed graph for relation \(R \) on set \(A \):

\[A = \{2, 3, 4, 6, 7, 9\} \]

For all \(x, y \in A \), \(x R y \iff 3 \mid (x - y) \) is:
Is the relation R is reflexive?

Is the relation R symmetric?
Transitivity

Is the relation R transitive?