CSCE 110: Programming I

David Kebo Hougninou

Algorithms and recursion
What is an algorithm?

An algorithm is a finite sequence of steps that solves a problem. It can be described in English or in pseudocode. Pseudocode is an intermediate language between English and the implementation of the steps in code.

- It is independent of the programming language
- It is more general than a specific programming language

Algorithms

What are we interested in?

The computational complexity of our algorithm:

- How much computing resources are needed to solve a problem?
- How long (time) and how much memory (space) does it take?
- We observe the behavior of algorithms as the input size grows
Some properties of algorithms

1. **Input**: An algorithm has input values from a specified set.

2. **Output**: An algorithm produces output values from a specified set. The output values are the *solution*.

3. **Correctness**: An algorithm should produce the *correct* output values for each set of input values.

4. **Finiteness**: An algorithm should produce the output after a *finite* number of steps for any input.

Maximum-Finding Algorithm

Find the maximum in the list:

4, 7, 3, 10, 9, 12, 6, 8, 32, 5, 2, 1
Maximum-Finding Algorithm

Find the maximum of list: a_1, a_2, \ldots, a_n

1: max $\leftarrow a_1$
2: for $i \leftarrow 2 \ldots n$ do
3: if max $<$ a_i then
4: max $\leftarrow a_i$
5: end if
6: end for
7: return max

Activity

Does the maximum-finding algorithm have the desired properties of an algorithm?
The Searching Problem

Find 5 in the list:

4, 7, 3, 10, 9, 12, 6, 8, 32, 5, 2, 1

The Searching Problem

• **Input:** list of elements \(a_1, a_2, \ldots, a_n \) and a particular element \(x \)

• **Output:** return the index in the list where \(x \) appears; if \(x \) is not in the list then return -1

Assume that all the list elements are unique.
Linear Search Algorithm

Input: a_1, a_2, \ldots, a_n and x

1: $i \leftarrow 1$
2: while $i \leq n$ and $x \neq a_i$ do
3: $i \leftarrow i + 1$
4: end while
5: if $i \leq n$ then
6: return i
7: else
8: return -1
9: end if

Linear Search Algorithm

• Linear search can be slow: if x is not in the list or is toward the end, we have to check all (or most) of the elements in the list.

• Informally, we can see that the running time is proportional to the number of elements in the list.
The Sorting Problem

- **Input:** list of elements a_1, a_2, \ldots, a_n drawn from totally ordered set.
- **Output:** list of elements b_1, b_2, \ldots, b_n that is a rearrangement of the input list such that $b_1 < b_2 < \ldots < b_n$.
- Assume all the list elements are unique.

Bubble Sort Algorithm

Bubble sort makes **multiple passes** through a list.

Every pair of elements that are out of order are **interchanged**.
Bubble Sort

e.g. Steps of bubble sort with: \{3, 2, 4, 1, 5\}

- At the first pass the largest element is put into the correct position
- At the end of the 2nd pass, put the 2nd largest element in the correct position
- In each subsequent pass, an additional element is put in the correct position

Bubble Sort Algorithm

Input: array A[1 ..n] of elements

1: for i:=1 to n-1
2: for j:=1 to n-i
3: if a\textsubscript{j} > a\textsubscript{j+1} then interchange a\textsubscript{j} and a\textsubscript{j+1}
4: end for
5: end for

\{a\textsubscript{1}, \ldots, a\textsubscript{n} is now in increasing order\}
Recursion

Recursively Defined Functions

A recursive function is a function that calls itself until a base condition is true, and the execution stops.

Each subsequent instance of the recursion gets closer to a stopping case.
Fibonacci numbers

The Fibonacci numbers are the numbers in the following integer sequence.
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

Recursion example

Basis step: \(\text{fib}(0) = 0, \text{fib}(1) = 1 \)

Inductive step: \(\text{fib}(n) = \text{fib}(n-1) + \text{fib}(n-2) \) for all \(n \geq 2 \)

\[
\begin{align*}
\text{fib}(2) &= \text{fib}(1) + \text{fib}(0) = 1 + 0 = 1 \\
\text{fib}(3) &= \text{fib}(2) + \text{fib}(1) = 1 + 1 = 2 \\
\text{fib}(4) &= \text{fib}(3) + \text{fib}(2) = 2 + 1 = 3 \\
\text{fib}(5) &= \text{fib}(4) + \text{fib}(3) = 3 + 2 = 5 \\
&\quad \ldots
\end{align*}
\]
Recursive Algorithm: Fibonacci

1: function fib(n):
2: if n = 0 then // stopping case
3: return 0
4: else if n = 1 then // stopping case
5: return 1
6: else
7: return fib(n-1) + fib(n-2) // closer to stopping case
8: end if
9: end function

Recursively Defined Functions

Example:
Give a recursive definition of the factorial function n!

Solution
f(1) = 1
f(n) = n × f(n-1)
Recursive Algorithm: $n!$

1: function factorial(n):
2: if $n = 1$ then // stopping case
3: return 1
4: else
5: return $n \times \text{factorial}(n-1)$ // closer to stopping case
6: end if
7: end function

Recursively Defined Functions

Example:
Give a recursive definition of the function a^n

Solution
$a^1 = a$
$a^n = a \cdot a^{n-1}$
Recursive Algorithm: a^n

1: `function power(a, n):
2: if n = 1 then // stopping case
3: return a
4: else
5: return a * power(a, n-1) // closer to stopping case
6: end if
7: end function

End